
Closed Loop Interactive Embodied Reasoning for Robot Manipulation
Supplementary material

Michal Nazarczuk, Jan Kristof Behrens, Karla Stepanova, Matej Hoffmann and Krystian Mikolajczyk

A. Weight measurements details

To perform weight measurements in our experiment, we
rely on the external force reported by libfranka. We assume
that the only external force is incurred by the objects held
in the hand, i.e., that the robot is not in collision with the
environment. To avoid errors due to model inaccuracies, we
measure the force in the z-direction twice: once with the
empty gripper and once with the object lifted to the same
robot configuration. The difference divided by the constant
g proved to be a reliable indicator of the weight sufficient
for our applications. If more accurate numbers are needed,
we could use a digital scale, but this would have no effect
on the reasoning side.

For simplicity, we assume that for each considered prop-
erty, we have a suited (primitive) measurement procedure
that interacts with the objects and produces an estimate of
the property. It is true that we could, for example, from the
same interaction estimate the object’s inertia or the center
of gravity. Reusing the data would possibly lead to shorter
action sequences for complex queries, but this is not in the
scope of this paper.

Attributing a measurement to several objects is currently
not implemented. It is theoretically possible to formulate
constraints on sets of properties to encode and reason about
combined measurements. We will consider that in our future
work.

In Figure 1 we show graphs of the Force in the z direction
over time for measuring the weight of a mug and a spam can.
Figure 2 shows the robot in the moments of force assessment
(also marked in the graphs by the vertical lines). Our method
results in an estimate of the mug weight of 95.5g (ground
truth 96g) and 22.2g for the spam can (ground truth 24g),
ground truth shown in Figure 3. For a measurement with the
empty gripper, we observed an estimated weight of -2 g. This
shows that we can distinguish the weight of all objects in the
presented tasks and also reach a surprisingly good absolute
precision.

B. An example of the scene graph

In order to better explain the details of our approach,
in Figure 4 we show an example of the execution of the
query that includes notation for program execution, action
planning, and updates of the scene graph.

C. Stiffness measurements details

In addition to our benchmark, we propose an extension
with another invisible physical property - stiffness. We pro-
vide an example of the task execution in the accompanying

Fig. 1. Graphs of the force in the z direction for weighing the mug (top)
and the spam can (bottom)

Fig. 2. Robot configurations corresponding to weight estimation.

Fig. 3. Ground truth weight measurements for mug (left) and spam can
(right).

Query:

Mesure the
weight of the
yellow object.

Id0
meat can

blue
metal
prism

?

false
false
false

Id
name
colour
material
shape
weight
pos + rot
grasped
approached
gripper above

Id1
mustard
yellow
plastic

irregular
?

false
false
false

Id2
bowl
red

metal
hemisphere

?

false
false
false

Id0
meat can

blue
metal
prism

?

false
false
false

Symbolic programId
name
colour
material
shape
weight
pos + rot
grasped
approached
gripper above

Id1
mustard
yellow
plastic

irregular
?

false
false
false

Id2
bowl
red

metal
hemisphere

?

false
false
false

Action Planner
measure_weight

Id1
mustard
yellow
plastic

irregular
?

false
false
false

filter_colour[yellow]

measure_weight

Symbolic program

filter_colour[yellow]

measure_weight

move[1]
approach[1]

grasp
lift

Id1
mustard
yellow
plastic

irregular
?

false
false
true

OD+PE+M

Action Planner
measure_weight

approach[1]
grasp

lift

Id1
mustard
yellow
plastic

irregular
?

false
true
true

OD+PE+M

Action Planner
measure_weight

grasp
lift

 OD - Object Detection
 PE - Pose Estimation
 AR - Attributes Recognition
 M - Measurements (Sensor readings)

Execute + capture

Execute + capture

Id1
mustard
yellow
plastic

irregular
?

true
true
true

OD+PE+M

Action Planner
measure_weight

lift

Execute + capture

Id1
mustard
yellow
plastic

irregular
46g

true
true
true

OD+PE+M

Execute + capture

Symbolic program

filter_colour[yellow]

measure_weight

Id1
mustard
yellow
plastic

irregular
46g

true
true
true

Symbolic program

ANSWER
46g

Fig. 4. An example of task execution by CLIER approach.

Fig. 5. Stiffness measurement procedure.

video (see the last part of the supplementary video for the
execution of task “Pick up the stiffest metal object”). The
stiffness measurement procedure that we implemented in our
physical setup utilises the ability of the robot to close the
gripper while not exceeding a given force limit. First, we
close the gripper with a minimal force F1 = 0.1N and
read the aperture d1 of the gripper (see Fig. 5a). Then we
open the gripper slightly and close it again with a higher
force F2 = 50N and read the aperture d2 (see Fig. 5b). The
stiffness estimate is then given as k = F2−F1

|d2−d1| .

D. Horizon length comparison

We believe that our action planning is robust to the
horizon due to the design of our system. Specifically, the
transformer is fed with a scene graph and a subgoal target
(obtained using the seq2seq symbolic program generator) as
the input to predict the next primitive action. Then, after
every action, a new action plan is generated. Therefore,
the history of the interactions (memory) is stored within
the scene graph, and reasoning is always performed from
the current state. In Figure6, we show the graph of the
success rate of the experiment with respect to the ground
truth number of steps for the given instruction. We see a
slight decrease in accuracy with the increasing length of the
action sequence. However, we do not attribute that to the
reasoning module itself (which on its own performs at 86.7%,
and we did not observe a correlation between step index and
occurrence of errors). Qualitative error analysis suggests that
the decrease in accuracy can be attributed to errors in scene
graph updates, specifically, pose regression errors that lead
to missed grasping.

E. Error codes details

This section, covers the list of possible outcome codes for
the CLIER framework, along with an explanation of possible
shortcomings of the tested model. The codes include:

• Correct answer - the answer to the query is correct (last
program item is non-actionable);

• Task success - the task was executed correctly (last
program item is actionable);

• Task failure - last action was executed but the task was
not resolved correctly;

• Execution error - action executor did not exit with a
success status within the timeout limit (usually caused
by infeasible configuration or physics conflict, e.g.

Fig. 6. Success rate of CLIER prediction with respect to ground truth task
length.

errors in position estimation leading to excessive forces
acting on objects);

• Loop detected - a sequence of repeating actions was
detected (usually caused by incorrectly estimating the
pose and repeating the sequence of approaching and
grasping the object);

• Physics error - caused when an object is thrown out of
the workspace due to excessive forces during manipu-
lation;

• Program error - error in the inference of the instruction;
• Recognition error - errors in the attributes recognition

leading to incorrect scene graph creation;
• Output error - incorrect output of the program (possibly

caused by incorrect scene update);
• Scene inconsistency - high discrepancy in the recogni-

tion of attributes and poses in the consecutive frames.

F. Details on primitive actions

In this section, we present some more details on how
primitive actions are translated into motion paths. Note that
the actions take the estimated scene graph as the argument
(that includes estimated positions, orientations, and heuristic
assessing whether the object is in the hand of the gripper).

1) move: The action move can take either part of the
table, or the target object as the argument. Given the object as
the target of the action, the final position of the end effector
is calculated such that either the centre of the currently held
object or the middle of the end effector are directly above the
centre of the target object. The height of the target position
is estimated based on the object bounding boxes to keep
a given clearance value. The trajectory of the movement is
currently based on the bounding boxes of all objects in the
scene. Any motion planning algorithm can be implemented
in that place according to the needs.

When a part of the table is passed as an argument,
movement target is found at a convenient free space when a
gripper is currently holding an object. A set of coordinates

are tested, spiralling from the middle of the target zone (e.g.
left part of the table), and the position is considered suitable
if no bounding boxes are intersecting.

2) lift, lower: Actions of lifting and lowering the ma-
nipulator are simply upward and downward movements that
consider given clearances of bounding boxes with respect to
the tabletop.

3) open gripper, close gripper: Actions control-
ling the gripper consider a current gripper state, and control
the gripper to keep closing until further closure is not viable,
or open till fully opened position.

4) approach: We consider a few main cases of grasping
objects: grasping of cylinders, grasping by the edge, grasping
by the handle, grasping of boxes.

For grasping of the cylinder, an object’s orientation is
taken into account. If the object is withing the tolerance of
standing in the upright position, a top grasp is considered. If
the bounding box of the object signifies bigger dimensions
than grippers capability, or one of the dimensions in xy-
plane is significantly different to other, the grasp is reduced to
upright edge grasp. Otherwise, an object is grasped from top,
at its axis of symmetry, avoiding gripper rotation. Similarly,
if the object is considered to be laying on the tabletop, a top
grasp over the object is performed if viable.

For the edge grasping, a similar check for the object
position (standing/laying) is performed. In both cases the
object is grasped by the edge. Gripper is positioned on top
of the edge for laying object, and for standing, perpendicular
to the bounding box longer dimension (in xy-plane) in order
to avoid possibility of handles interfering.

For the grasping by the handle, it is assumed that handle
appears at the longer side of the objects (according to
bounding box). A grasp is performed with a certain offset
from the boundary of object (scaling with the size of the
object).

For the grasping of boxes, the smaller dimension of the
bounding box of the object in xy-plane is used to align the
gripper along shorter axis. Thereafter, the grasp is performed
in the middle of the bounding box (in xy-plane) at a given
depth.

G. Scene graph update procedure

The scene graph contains the categorical attributes for
every object, along with their positions and orientations. At
each update, we align a newly recognised set of objects to the
current scene based on matching their attributes (followed by
similarity of poses for mismatch cases). Additionally, we use
simple geometrical heuristics on the positions of the objects
and the position of the end effector of the manipulator in
order to define the following attributes: whether the object is
in the gripper hand, whether the object is within the feasible
grasp, whether the object is raised above table, whether the
gripper is placed directly above the object.

	Weight measurements details
	An example of the scene graph
	Stiffness measurements details
	Horizon length comparison
	Error codes details
	Details on primitive actions
	move
	lift, lower
	open_gripper, close_gripper
	approach

	Scene graph update procedure

